Development and validation of a RPLC-MS/MS method for the quantification of ceramides in human serum of patients with CAD

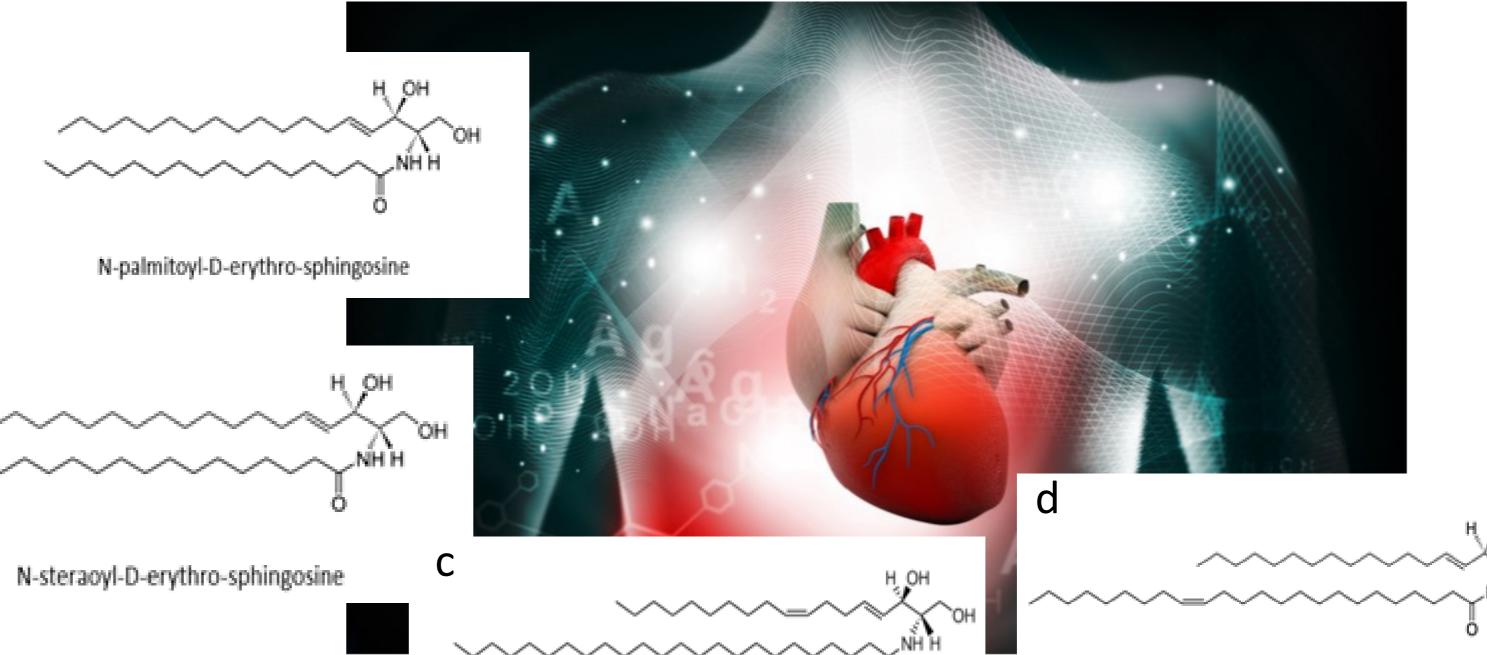
Olga BEGOU^{1,2}, Olga DEDA^{2,3}, Helen GIKA^{2,3}, Georgios THEODORIDIS^{1,2*}

¹Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki

- Biomic Auth, Bioanalysis and Omics Lab, Centre for Interdisciplinary Research of Aristotle University of Thessaloniki, Innovation Area of Thessaloniki, Thermi, 57001, Greece

³ Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki

*gtheodor@chem.auth.gr


а

Introduction

Ceramides are key-role compounds that regulates numerous central cellular processes, such as apoptosis, inflammation, etc.

A plethora of studies have showed that changes on the concentrations of bioactive lipids in serum are associated with different these pathophysiological states, namely obesity, cardiovascular diseases, ovarian b cancer, metabolic disorders.

□ Four specific molecular ceramides are highly linked to coronary artery disease (CAD), enhancing the prediction of fatal outcomes (Fig. 1). **Coronary artery disease (CAD) represents the most common form of** cardiovascular disease and remains one of the leading causes of mortality and morbidity worldwide, especially in western countries. Greece is not an exception, as 250,000 patients suffering from coronary atherosclerosis. **Different** types of coronary syndrome includes the ST-elevation myocardial infarction (STEMI), the non–STEMI (NSTEMI) ST-segment elevation MI, the unstable angina and stable angina.

Fig. 1: Molecular structure of C16.0 (a), C18.0 (b), C24.0 (c), C24.1 (d)

Aims

The aim of the present study was the development and validation of an RPLC-MS/MS method of the accurate quantification of four highly significant ceramides in CAD patient serum samples.

D Patients suffering from CAD were recruited to participate in large-scale study, "CorLipid" (MIS 5030456) aiming the diagnostic utility of serum metabolomics-based biomarkers for determination of the complexity and the severity of coronary artery disease, assessed using SYNTAX score.

Method Development

 Instrument: Alliance HT Waters 2790 (Milford, Massachusetts, USA) equipped with a SCIEX API 3200 TM (Warrington, Cheshire, UK) Column: ReproShell ODS-3 (50 mm x 2 mm, 2.7 μm). Mobile Phase: A: H₂O + 10 mM CH₃COONa (pH=5), B: MeOH: IPA 1:1 v/v + 10 mN CH₃COONa +0.1 % FA. IS: Deuterated Ceramide LIPIDOMIX[®] Mass Spec Standard solution (1:1 dichloromethane:methanol), (Avanti Polar Lipids) 	 Both liquid-liquid (LLE) and supported liquid (SLE) extraction were applied examing the efficacy of the sample preparation process. Different extraction solvents for LLE included MTBE, CHCl₃: MeOH, 1:1 v/v, CHCl₃: MeOH, 1:1 v/v +NaCl and for SLE included EA, MTBE, CHCl₃: IPA 1:1 v/v were tested. SLE with EA were selected based on the accuracy, precision, extraction recovery, process efficiency and matrix effect.
--	--

Table 2a & 2b: MS parameters

* Quantifier Ion

Step 2

Wait

Step 3

Elute

.

Table 1. Gradient System

Time	A%	B%	Flow Rate (mL/min)
0	20	80	0.6
1.5	0	100	0.6
3.0	0	100	0.6
3.01	20	80	0.6
5.0	20	80	0.6

2a.								
	MW	Parent	Daughter	DP	EP	CEP	CE	CXP
		lon	lons	(volts)	(volts)	(volts)	(volts)	(volts)
C16:0	537.512	538.470	264.300*	55.0	4.5	24.0	31.0	4.0
C10.0	337.312	356.470	520.500	55.0	4.5	24.0	21.0	6.0
C18:0	565.543	566.460	264.300*	51.0	5.0	30.0	33.0	4.0
C10.0	505.545	500.400	548.500	51.0	5.0	50.0	19.0	8.0
C24-0	640 627	650 522	264.400*	41.0	10.0	26.0	39.0	4.0
C24:0	649.637	650.532	632.600	41.0	10.0	36.0	27.0	6.0
C2 4:1	647 633	640 400	264.300*	61.0	4.0	46.0	41.0	4.0
C24:1	647.622	648.482	630.500	61.0	4.0	46.0	24.0	8.0

2b.	
Curtain Gas (CUR)	20.0
Collision Gas (CAD)	5
IonSpray Voltage	5500 V
Temperature (TEM)	450.0 °C
Ion Source Gas 1 (GS1)	55.0
Ion Source Gas 2 (GS2)	35.0

Application

Preliminary results were obtained applying the newly developed method. Twenty serum samples from 4 groups ACS (STEMI, NSTEMI, unstable angina) and stable angina were analyzed.

D The integration of the chromatographic peaks was achieved using Analyst Software. The data handling were performed using Graph Pad Prism 7.0 where ANOVA and FDR correction were processed.

Analytes partition **D** Univariate statistical analysis demonstrated significant differentiation of Ratio into elution solvent and are collected C18:0/C24:0 between patient serum samples with STEMI and Unstable angina (p=0.047), as well as STEMI and Stable angina (p=0.025).

Table 4: Mean concertation of the analyzed samples.

			Mean concertation (n=20) ng/mL								
	Group	C16:0	C18:0	C24:0	C24:1	Ratio C16:0/C24:0	Ratio C18:0/C24:0	Ratio C24:1/C24:0			
Acute Coronary Syndrome	STEMI	559.8	153.2	2288.0	1488.2	0.28	0.07	0.66			
	NSTEMI	337.4	69.4	2092.0	990.0	0.18	0.04	0.55			
	Unstable angina	356.2	77.0	2334.0	1075.8	0.16	0.04	0.50			
	Stable angina	437.0	68.6	2584.0	1276.2	0.18	0.03	0.56			

ple Preparatior

1.Serum dilution with H_2O , 1:1 v/v 2.Sample loading into cartridge & vacuum application (2-5 sec) Matrix components e.g. phospholipids, salts **3.Gradual elution gravity -assisted for 5** and proteins SLE Support min material (diatoms) 4.Addition of 2 mL of EA & elution as previous. **5.Vacuum application 6.Evaporation to dryness under N₂** stream 7.Reconstitution in IPA: MeOH 1:1 v/v

queous sample flows onto extraction

and is dispersed in small droplets

Step 1

Load

- □ The evaluation of the analytical parameters were performed in 3 different concentration levels (LQC, MQC, HQC) of spiked human serum (standard addition method) followed by SLE.
- Bovine Serum Albumin solution was tested as surrogate matrix of human serum, demonstrating satisfying results.
- LOD and LOQ were calculated as 3 ng/mL & 10 ng/mL, respectively.

Table 3: Analytical figures of merit

Analyte	Nominal Conc. ng/mL	Calculated conc. ng/mL	%RSD	Accuracy (% RE)	Extraction recovery (%)	Matrix effect	
	250	207.9	1.4	83.1	84.6		
C16:0	500	528.1	1.1	105.6	120.5	105.2	
	1000	996.5	4.0	99.6	106.4		
	250	230.4	1.2	92.2	92.1		
C18:0	500	503.6	0.4	100.7	115.2	98.5	
	1000	1003.1	2.7	100.3	96.3		
	1500	1290.0	3.0	86.0	88.03		
C24:0	3000	3541.6	0.5	118.1	113.7	102.5	
	6000	5825.4	3.6	97.1	108.7		
	1500	1329.9	0.5	88.6	87.3		
C24:1	3000	3243.1	0	108.1	115.9	106.3	
	6000	5958.7	2.5	99.3	107.2		

Conclusion

- The developed and validated method was proven to be accurate, precise, sensitive and free of interferences.
- Suitable for application in clinical studies and routine analyses.
- Comparisons between STEMI Unstable angina, as well as between STEMI Stable angina were found to be significant.

Acknowledgments

With the co-financing of Greece and the European Union

References

1.Andrikopoulos, G. et al., Hellenic J Cardiol 57, 157–166 (2016). 2.Kauhanen, D. et al., Anal Bioanal Chem 408, 3475–3483 (2016). European Union 3.Ceramides: A class of lipids with links to heart disease - Mayo Clinic. European Regional Development Fund 4. https://www.norlab.com/file/1929/download?token=opA1BbyL.